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Abstract---Competent single layers embedded in incompetent rock display a variety of structures if deformed by 
shortening or stretching: folds, boudins, or pinch-and-swells. Similarly, incompetent single layers hosted by more 
competent matrix rock may develop mullions, inverse folds, or both. The change in length of material planes with 
time is controlled by the type of bulk deformation and the initial layer orientation. The length and rotation history 
of material planes in a unit volume of rock is studied systematically by using, for the first time, deviatoric stresses 
of arbitrary--but constant---orientation making use of a fundamental deformation tensor. The traces of the eight 
planes in the unit volume of rock used in the analysis are in the plane of deformation and are treated as passive 
marker lines. The change in the length of these material lines is computed for arbitrary orientations of the 
principal deviatoric stresses. The history of the length change and rotation of the passive marker planes, carefully 
scaled against time, is subsequently used to predict the structures which would evolve in similarly oriented single 
layers of either competent or incompetent rock. The theoretical range of structural patterns evolving in the model 
is controlled by the orientations of the principal deviatoric stress. Conversely, the geometry of deformation 
patterns in nature can be used to constrain the possible orientations of the palaeostress axes. 

INTRODUCTION 

COMPE~r~T single layers embedded in incompetent rock 
may develop a variety of structures if deformed by 
shortening or stretching in the ductile field. Shortening 
instabilities are manifested as symmetric and asymmet- 
ric folds in the competent rock layer. Stretching instabi- 
lities occur as necks or pinch-and-swell structures which 
can separate into boudins. All these shear instabilities 
are caused by the resistance of competent layers to 
changes in their length whilst accommodating distortion 
due to shear stresses exerted at the interface with the 
incompetent matrix. The magnitude of these shear 
stresses is controlled by the deformation rate and the 
intrinsic viscosity contrast between the single layer and 
the matrix. The flow field in the vicinity of competent 
layers is complex and complete analytical solutions for 
the range of instabilities observed are not available (cf. 
Fletcher 1974, 1982, Smith 1975, 1977, 1979, Lloyd etal, 
1982, Emermann & Turcotte 1984). 

Ramsay (1967) has used a semi-analytical approach to 
predict from the change in length of material planes in a 
unit volume of rock whether shortening or stretching 
instabilities may develop (see also Becker 1893, Ram- 
berg 1959, Flinn 1962, Ramsay & Huber 1983). This 
approach assumes that the nature and occurrence of the 
instabilities are controlled by the type of bulk defor- 
mation and the initial layer orientation. Ramsay (1967) 
considered only two cases of bulk, homogeneous defor- 
mation of the rock volume containing the competent 
rock layer: pure and simple shear. Both of these plane 
deformations imply a constant orientation for the princi- 

*Present address: Department of Earth Sciences, King Fahd 
University of Petroleum and Minerals, 312 61 Dhahran, Saudia 
Arabia. 

pal stress axes with respect to a non-rotating boundary to 
the deforming volume, termed here the reference plane 
(Fig. 1). The principal deviatoric stress in pure shear is 
perpendicular to, and in simple shear at 45 ° to, the 
reference plane. Ramsay (1967) used these defor- 
mations in a graphical analysis to predict the orien- 
tations for which competent marker layers would 
buckle, unfold or stretch into boudins. 

The present aim is to expand the systematic study of 
the length history of material planes in a unit volume of 
rock by using deviatoric stresses of arbitrary--but 
constant---orientation making use of a fundamental de- 
formation tensor. The strategy followed here is as fol- 

a) 

/ / z 

Reference plane 

Reference plane 

Fig. 1. (a)&(b) Progressive pure and simple shear deformation of a 
cubic block viewed perpendicular to the pin-line bisecting the bottom 
plane. Thus the block is in two equal parts, each slipping without 
friction over the reference plane in opposite directions. Increments of 
finite strain shown are 2 Ma apart for a rock of isotropic rheology 

deforming at a strain rate of 10 -14 s -1. 
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I I Reference plane 
Unit length 

Fig. 2. Sketch section through the deforming unit volume to show the 
definitions of the angle, ~, of the principal deviatoric stress, rl,  with 
respect to the normal to the reference plane. Shown are the traces of 
eight differently oriented marker planes 1-8 for which the change in 

length and orientation are studied here. 

lows. Figure 2 shows the traces of the eight planes in a 
unit volume of rock used in the analysis. These traces are 
in the plane of deformation and are treated as passive 
marker lines. The change in the length of these material 
lines is computed analytically for arbitrary orientations 
of the principal deviatoric stress. The history of the 
length change and rotation of the passive marker planes 
is subsequently used to predict the structures which 
would evolve in similarly oriented single layers, either 
more competent or less competent than the host rock. 
Figure 3(a) illustrates qualitatively the relation between 
the major principal stress axis and the orientation of 
folded and necked competent layers. Similarly, Fig. 3(b) 
illustrates qualitatively the angular relationship between 
the major principal stress axis and the orientation of 
mullions and inverse folds in incompetent layers (see 
next section). 

The forward modelling of deformed competent layers 
in this analytical approach yields important implications 
for the interpretation of finite deformation patterns in 
nature. The orientation of the principal deviatoric stress 
and the associated orientation of the flow asymptotes 

a) Competent s i n g l e ~  

Reference plane 

b) Incompetent single layer [1; 1 
t 

~ ' ~  z 

Reference plane 
Fig. 3. Principle sketch illustrating (a) the orientation of buckling and 
boudinaging of competent single layers with respect to the directions 
of shortening and extension, and (b) the orientation of mullions and 
inverse folds of incompetent single layers with respect to the directions 

of shortening and extension. 

controls the progressive deformation of material lines. 
The geometry of deformation patterns in nature can 
therefore be used to constrain the possible orientations 
of palaeostress axes in the limiting conditions assumed 
here. The term deformation is used here to include both 
the strain and rotation component of the distortion, but 
neglects any spin (rigid body rotation) or translation. 
This is achieved by choosing a reference frame fixed to 
the deformation structures inside the spinning and trans- 
lating rock volume, so that estimates of palaeostress 
orientation are not affected by spin and translation. 

PREVIOUS RESEARCH 

Ramsay's (1967) graphical analyses of progressive 
deformation has been ground-breaking and maps the 
length history of material lines by superposition of finite 
and infinitesimal strain ellipses. The classical superposi- 
tion method does not emphasize the position of the 
principal stress directions with respect to the rotating 
sectors separating lines of different stretching regimes. 
Figure 4 fixes the stress orientation for pure and simple 
shear deformations and summarizes the main features of 
the classical superposition method in a model which is, 
for the first time, geometrically scaled in all stages. The 
bulk deformation is assumed to be planar, isochoric and 
homogeneous. The assumption of homogeneous defor- 
mation means that all straight layers and material lines 
through the centre of the strain ellipse describe the 
deformation on the scale of that domain. 

Figure 4(a) illustrates how the material lines initially 
occupy shortening and extending segments of Cauchy's 
infinitesimal strain ellipse. The fields of extension and 
shortening are separated by material lines that maintain 
their original length, equal to the diameter of the unde- 
formed strain circle. Figure 4(b) shows how the material 
lines that at the onset of the deformation coincided with 
the non-material lines of no infinitesimal strain (A) will 
rotate to their new position (A*) after some finite strain. 
These particular material lines have never shortened 
and will asymptotically rotate towards the direction of 
maximum finite stretch which is rotating in non-coaxial 
deformations as indicated by the long axis of the finite 
strain ellipse. Figure 4(a) also outlines the material lines 
B* that will rotate to eventually coincide with the non- 
material lines of no finite strain (B) after some strain 
(Fig. 4b). Figure 4(c) superposes the shortening and 
extension fields of the infinitesimal and finite strain 
ellipses. This allows the distinction of four different 
segments in finite strain ellipses, each segment contain- 
ing material lines with a characteristic length history. 

Ramsay (1967) used the ellipses of superposed strain 
histories (Fig. 4c) to predict which markers will fold and 
which ones are likely to boudinage if more competent 
than the matrix rock. The caption of Fig. 4(c) explains 
that segments may contain material layers only 
shortened into folds (segment 1), only extended by 
necking into boudins or pinch-and-swells (segment 4), 
first shortened into folds that are being unfolded (seg- 
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a) Infinitesimal strain ellipse 

B* B* 

Infinitesim A a ~  
strain ellipse ~ "  
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~ AB* 

A 

A - -  

All lines that are 
being shortened 

All lines that are 
being extended 

Two imaginary lines of no 
infinitesimal strain, separating 
fields of extension and shortening 

B* - -  Material lines that will become 
lines of no finite strain (B) after 
some finite strain 

b) Finite strain ellipse 

~ l;t 

Fini te ~ ' * - - - . - - -  U ndeformed 
strain ellipse circle 

Finite e t r a i n ~  

~.I l~J/'!~-~ ~ /'~...~ Undeformed 
- -  circle 

r ~  All lines that are still shorter 
than their initial length 

All lines that are now longer 
than their initial length 

A* - -  Initial material line Aof no 
infinitesimal strain, now rotated 
into this orientation 

B Two imaginary lines of no finite 
strain, separating fields of 
extension and shortening 

c) Ellipse of superposed 
strain histories 

B A A B 

'lj I 
,.l~zx ~ .  

B A* 

2. 

3. 

Lines only being shortened 

Lines previously shortened, now 
extending, but still shorter than their 
initial length 

Lines previously shortened, but now 
extending beyond their initial length 

Lines never shortened, extending 
at all times 

Fig. 4. Illustration of Cauchy's method of visualizing strain by ellipses of (a) infinitesimal or incremental strain, and (b) 
finite strain. Ramsay (1967) has extended this method in a systematic fashion by distinguishing four segments in what is here 
coined as (c) the ellipse of superposed strain histories. The four segments outlined for pure and simple shear are labelled 
1--4. The length history of material lines is determined by the segments distinguished. It is possible to predict what structure 

would arise if the deformed rock segments were to contain competent or incompetent single layers. See text. 

ment 2), or that have already been stretched beyond 
their initial length into boudins and pinch-and-swells 
(segment 3). This qualitative reasoning is supported by 
an extensive amount of analogue laboratory experi- 
ments on competent single layers visualizing the folding 
process for layer-parallel shortening (Ramberg 1959, 
1967, 1981, Blot 1961, Ghosh 1966, Cobbold et al. 1971, 
Roberts & Strrmg~rd 1972, Hudleston 1973, Johnson 
1977, Abbassi & Mancktelow 1990), and boudinaging or 
pinch-and-swell formation for layer-parallel extension 
(Cloos 1947, Ramberg 1955, Paterson & Weiss 1968, 
Str6mg~rd 1973, Gay & Jaeger 1975, Tro~ng 1975, 
Neurath & Smith 1982, Hildebrand-Mittlefehldt 1983, 
Bergman 1987). Similar dynamic conclusions may be 
drawn from numerical simulations of shortening of com- 
petent single layers into folds (Dieterich & Carter 1969, 
Shimamoto & Hara 1976, Anthony & Wickham 1978), 
and extension with necking into boudins (Selkman 1978, 
Lloyd & Ferguson 1981). 

A minor novelty introduced here is the extension of 
Ramsay's (1967) arguments to predict what will happen 
to material lines if these are the contacts of incompetent 
single layers. Laboratory experiments have established 
that mullions or cuspate-lobate folds will form for layer- 
parallel shortening of incompetent single layers (Cob- 
bold 1969, Sokoutis 1987, 1990). Layer-parallel exten- 
sion of incompetent single layers produce theoretically 
predicted inverse folds (Smith 1975). Unpublished ex- 

periments at the University of Uppsala (Sokoutis per- 
sonal communication) and field observations of incom- 
petent basic dykes hosted in a gneissic basement (Talbot 
& Sokoutis 1992) suggest that inverse folds look similar 
to pinch-and-swells (Fig. 3b). It must be emphasized 
that inverse folds are rare and most incompetent layers 
are likely to extend uniformly. The four segments of Fig. 
4(c), if containing incompetent single layers, will contain 
material lines only shortened into mullions (segments 
1), only extended uniformly or rarely into inverse folds 
(segment 4), first shortened into mullions that may open 
by layer-parallel extension (segment 2), or that have 
already been stretched beyond their initial length into 
inverse folds (segment 3). 

Other studies relevant to the present discussion are 
summarized here. Variations in the deformation pat- 
terns of cross-cutting veins of variable orientations be- 
fore the onset of deformation have been used--applying 
the inverse of Ramsay's (1967) semi-analytical approach 
outlined above--to constrain the dimensions and 
orientation of the finite strain ellipsoid in suitable field 
exposures (Talbot 1970). Ramberg (1967) has demon- 
strated a tensor approach in which the orientation of 
strain markers that cut the ellipsoid of bulk or overall 
strain at different angles is used to determine the ellip- 
soid's axial ratio. Flinn (1962) summarized expressions 
which solve the inverse problem: the length of lines of 
arbitrary orientation within a strain ellipsoid follows 
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from the three angles with the principal strain axes. 
None of these expressions allow quantitatively following 
the history of changes in length and orientation of 
material lines, because the displacement gradient tensor 
was not formulated in time-dependent terms. 

Passchier (1986, 1990a,b) focused on establishing the 
orientation of the incremental stretching axes by relating 
shear zone patterns to the kinematic vorticity number. 
However, practical application of this approach is lim- 
ited because the orientation of Passchier's (1986, 
1990a,b) flow patterns is not appropriately related to 
physical boundaries o f  the deformation zone (compare 
with flow patterns in Weijermars 1991). Passchier et al. 
(1990) and Hanmer & Passchier (1991) emphasized that 
all material lines will rotate towards the maximum 
instantaneous stretching axis. It is shown here how these 
stretching axes relate to the physical boundaries of a 
deformation zone, and how stretching axes rotate 
towards the asymptotes of the flow field. The present 
study further emphasizes the significance of the relative 
orientation of the bulk axes of principal stress and finite 
stretching. The tensor approach allows inclusion of the 
time scale of the deformation, in both dimensional and 
non-dimensional form. 

M E T H O D  

An arbitrary deformation is fully described by the 
following point transformation: 

(x,y,z) = F(xo,Yo,Zo), (1) 

where (xo,Yo,Zo) and (x,y,z) are the position vectors of 
an arbitrary material particle before and during defor- 
mation and F is the deformation tensor. Solutions of the 
components of the tensor F can be obtained by integrat- 
ing the rate of displacement or velocity gradient 
equations over time. 

Ramberg (1975a,b) first used equations for particle 
movement paths in a study of progressive deformation 
involving superposition of simple and pure shear defor- 
mations. Weijermars (1991) simplified the analytical 
description of progressive deformation by deriving a 
tensor for deformation caused by a deviatoric stress of a 
constant orientation. This deformation tensor was used 
to forward model the progressive deformation of a unit 
volume of rock in response to deviatoric stresses of 
various constant orientations (Weijermars 1991). The 
same approach is used here to visualize the length 
history of material lines. 

In the case of homogeneous plane strain in the XZ-  
plane, with the X-axis chosen parallel to a non-rotating, 
free-slip boundary to the deforming volume (Fig. 5a) 
only four of the nine components of the deformation 
tensor are non-zero. This detachment boundary may be 
interpreted as a stretching fault, using a new termino- 
logy for faults active contemporaneous with ductile 
deformation of the wall rock (Means 1989, 1990). 
The detachment may accommodate either shortening 
or extension stretch, and may be rotating or 

a) b) Z 

~--- Unit length ~ Reference plane 
, / ~  1 x 

F11 F13 

Fig. 5. (a)&(b) Principle sketches through the deforming unit volume 
to show the definitions of the constant angle, ~, of the arbitrary 
principal deviatoric stress, r l ,  with respect to the normal to the 
reference plane. The deformation tensor components  Fax, Fl3 and F33 

relate to physical dimensions as indicated. See text. 

spinning. For practical reasons, the spin is neglected and 
the reference frame is kept fixed to the detachment 
plane at all times. The four non-zero tensor components 
are (Weijermars 1991): 

Fal = exp(R, cos 2~) (2a) 

Fez = 1 (2b) 

F33 --= Fi~ 1 (2c) 

El3  = ( E l l  - Fi] 1) tan 2~, (2d) 

where the only two independent variables are ~, the 
angle between the largest principal deviatoric stress, rl, 
and the normal to the reference plane (Fig. 5b), and the 
non-dimensional time Rt = t@ Arbitrary quantities are 
time t and principal strain rate kl. Positive angles of ~ are 
measured anti-clockwise from the normal to the refer- 
ence plane. The tensor component F22 = 1 accounts for 
the plane isochoric deformation so that y = Y0 at all 
times. 

Figures 5(a) & (b) explain how the tensor components 
Fax, F13 and F33 are physically measurable as the normal- 
ized dimensions of a model cube deforming along a 
detachment horizon. Fa1, Ft3 and F33 can be used to 
express the change in length, L(Rt), of any marker in 
terms of ~ and Rt. Figures 6(a)-(h) illustrate how Fll, F13 
and F33 determine the lengths of lines 1-8, normalized 
by the initial length unit of Fll. The corresponding 
analytical expressions are: 

Line 1: LI(Rt) = Fll (3a) 

Line 2: L2(Rt) = [[Fll - (F13/2)] 2 + (1733/2)2] 1/2 (3b) 

Line 3: L3(Rt) = [ ( E l l  - E l 3 )  2 + F23]  1/2 (3c) 

Line 4: L4(Rt) = [[(F11/2) - F13] 2 + F323] 1/2 (3d) 

Line 5: Ls(Rt) = (El3 + F~3) 1/2 (3e) 

Line 6: L6(Rt) = [[(F11/2) + F13] 2 + F~3] m (3f) 

Line 7: L7(Rt) = [(F11 + El3) 2 -t- F23]  1/2 (3g) 

Line 8: Ls(Rt) = [[Fll + (F13/2)] 2 + (F33/2)2] 1/2. (3h) 

Substitution of expressions (2a), (2c) and (2d) into 
(3a)-(3h) eliminates tensor components Fll, F13 and F33 
and yields line lengths as functions of ~ and Rt. The 
change in inclination of the marker line with respect to 
the X-axis, ~0, measured clockwise as indicated in Fig. 6, 
is:  
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b) Line 2 
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1/'2 F13 

g) Line 7 

[ F11 II- F13-1 

d) Line 4 

1/=Fll - F13 I/4 Fll 

Line 6 

~'1/4F1~ I/:ZFll ÷ Fl,a Ul/4Fl~ 

h) Line 8 

b-t 
V= Fl.q 

Fig. 6. (a)-(h) The length of passive line markers 1-8 can be ex- 
pressed in terms of tensor components Fll, F13 and F33, using the 
Pythagoras formula (equations 34-3h). The orientation, ~, of the 
marker lines with respect to the horizontal X-axis may also be 
expressed in terms of tensor components Ft 1, F13 and F33, using simple 

goniometric formulas (equations 4a-4h). 

(4a) 

[F33 / (2F l l  - F13)] (4b) 

[F33 / (F l l  - F13)I (4c) 

[ F a 3 / [ ( F l l / 2 )  - F13]] (4d) 

- tan -1 (Faa/F13) (4e) 

Line 1: ~l(Rt) = 0 ° 

Line 2:~2(R3 = tan -1 

Line 3: ~3(Rt) = tan -1 

Line 4: ~4(Rt) = tan -]  

Line 5: ~5(Rt) = 180 ° 

Line 6: ~b6(Rt) = 180 ° 

Line 7: q~7(Rt) = 180 ° 

Line 8: ~8(Rt) = 180 ° 

Lines 2, 3 and 4 will 

- tan -1 [ F 3 3 / [ ( F l l / 2  ) at- El31] (4f) 

- tan - ]  [F33/Fll at- El3)] (4g) 

- tan -1 [F33/(2F11 + / ' 1 3 ) ] .  (4h) 

rotate through the vertical given 
sufficient time. If this happens, ~ will be smaller than 0 ° 
in the analytical expressions (4b)-(4d). It is therefore 
necessary to append an IF statement to expressions 
(4b)-(4d) saying that, for q~ < 0 °, ~b = 180 ° + ~. 

RESULTS 

Equations (3a)-(3h) and (4a)-(4h) have been evalu- 
ated and summarized in a series of graphs. The time 

915 

steps used in the computations are scaled by absolute 
times, t, according to: 

t = R t / e  1. (5) 

Scaling of absolute times is possible after adopting a 
characteristic geological strain rate of 10 -14 s -1, and 
non-dimensional R t units of 0.315 for each Ma. Figures 7 
and 8 represent a selection of the generated graphs using 
material lines 1, 3, 5, 6 and 7. Figure 7 illustrates the 
change in length of these lines with time; Fig. 8 plots 
their corresponding change in orientation with time 
using expressions (4a)-(4h). 

Figure 7 plots the change in length of single lines for 
pure shear (~ = 0 ° and ~ = 90°), simple shear (~ = 45 °) 
and intermediate stress orientations ~ = 10 °, 20 °, 30 °, 
40 °, 50 °, 60 ° and 70 °. Of all eight lines evaluated, line 1 
(parallel to the detachment) provides the largest range 
in stretches for 0 ° -< ~ -< 90 °, lying in both the extensional 
and shortening field. In contrast, line 7 will never show 
any shortening and will extend in a fashion which--for  
the first 5 Ma-- is  practically insensitive to variations in 
the principal stress orientation. In general, all material 
lines rotate away from the major principal stress axis and 
therefore will eventually stretch. Exceptions are lines 
parallel to the X-axis (line 1), which do not rotate, but 
shorten for 45 ° < ~ --< 90 °, extend for 0 ° -< ~ < 45 °, and 
maintain constant length for simple shear, i.e. ~ = 45 °. 

Figure 7 further shows that, in pure shear defor- 
mations (~ = 0 ° and ~ = 90°), all lines will extend 
continuously except for lines parallel to the principal 
stress axes. For simple shear deformations (~ --- 45°), all 
lines will have stretches larger than unity after about 7 
Ma. The length of lines parallel to the stretching fault 
remains unchanged. For 0 ° < ~ < 45 °, some lines suffer 
initial shortening, but these will extend later so that 
eventually no line remains shorter than its initial length 
given sufficient time. For 45 ° < ~ < 90 °, there is very 
little initial shortening of any material lines. All lines will 
have stretches larger than unity after about 10 Ma, 
except for lines parallel to the stretching fault. 

Figure 8 emphasizes that line 1, parallel to the detach- 
ment,  may shorten or extend but will not rotate at all. It 
also shows that line 5 will always rotate in the same, 
clockwise direction as ¢ consistently increases for any 
and never decreases. The remaining material lines may 
either rotate clockwise or anti-clockwise, depending 
upon the orientation of the principal stress. All rotating 
material lines will tend to align after about 8 Ma of 
deformation. This is exactly true for all lines deforming 
by principal deviatoric stress orientations 0 ° < ~ - 45 °, 
as these lines can be seen to rotate towards parallelism 
with the X-axis. For pure shear deformation (~ = 0 ° and 

= 90°), all lines will still rotate towards parallelism with 
the X-axis, but lines which are parallel to the major (~ = 
0 °) and minor (~ = 90 °) principal stress axes stay perpen- 
dicular to the X-axis. For  deformations where 45 ° < ~ < 
90 ° all lines except for line 1 rotate towards a direction of 
maximum stretch which is not parallel to the X-axis but 
aligned with the orientation of the extensional flow 
asymptote (see later). 
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Fig. 7. Change in length of material lines 1, 3, 5, 6 and 7 defined in Fig. 2 as a function of time and constant stress 
orientat ion,  ~, defined in Fig. 5(b). The length change is normalized and thus expressed as a stretch. The time scale is valid 
for a principal geological strain rate of 0.315 Ma-1 or 10-14 s - l .  Governing expressions are equations (3a)-(3h).  All lengths 

are normalized by their own initial length according to L* = L(Rt)/L(O). 

GENERALIZATION 

Figures 9(a)-(e) show the progressive deformation of 
a unit cube at 2 Ma intervals for a strain rate of 10 -14 s -I 
for ~ = 0 °, 30 °, 45 °, 60 ° and 80 °. The bulk deformation 
remains homogeneous because there is free slip at the 
base of the deforming unit volume. Strain gradients in 
the direction perpendicular to natural stretching faults 
may still be accounted for by choosing subdomains small 
enough to approximate homogeneous deformation. The 
graphs of Figs. 7 and 8 were used to reconstruct the 
stretching and rotation history of each of the eight 
marker lines used in Fig. 9. The structures indicated 
assume a competent single layer. A similar diagram 
could be constructed for incompetent single layers, but 
is considered redundant. 

Figure 8 illustrated how all material lines will tend to 
rotate away from the principal stress axis and become 
subparallel to the direction of maximum stretch. The 
direction of maximum finite stretch is indicated in Fig. 9 
by the extensional flow asymptote. The material lines 

are subparallel to the extensional flow asymptote after 
about 8 Ma of deformation, except for those coinciding 
with the direction of the compressional flow asymptote. 
For principal deviatoric stress orientations 0 ° -< ~ _< 45 °, 
the direction of maximum stretch is parallel to the 
stretching fault or the X-direction. For deformations 
where 45 ° < ~ -< 90 ° the direction of maximum stretch is 
not parallel to the X-axis but aligned with the orientation 
of the extensional flow asymptote. Rotation of material 
lines towards parallelism with the extensional flow 
asymptote occurs faster in pure shear than in less 
efficient simple shear deformation. 

The range of maximum finite stretch in Fig. 9 ranges 
between 3 and 3.5 after 4 Ma of deformation at 10  - 1 4  S - I  

depending upon stress orientation. Strain analyses of 
naturally deformed rocks indeed suggest that most de- 
formation patterns take about 1-5 Ma to develop, 
whereas stretches range mainly between 1 and 3 
(Pfiffner & Ramsay 1982). Figure 9 illustrates that the 
occurrence of folds would become progressively un- 
likely if finite strains increase. The amount of rotation of 
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Fig. 8. Change in orientation of material lines 1, 3, 5, 6 and 7 defined in Fig. 2 as a function of time and constant stress 
orientation, ~, defined in Fig. 5(b). The orientation, @, is measured as indicated in Figs. 6(a)-(h). The time scale is valid for a 

1 4  1 principal geological strain rate of 0.315 M a -  o r l 0 -  s -  . Governing expressions are equations (4a)-(4h). 

the boudins and minor folds in Fig. 9 is arbitrary, but the 
sense of rotation is in accordance with experiments and 
theory of Ghosh (1966) and Ghosh & Ramberg (1966). 
Although the theory developed here describes the 
stretch and rotation of passive markers, this will closely 
approximate the deformation history of the enveloping 
surface of active marker layers. This is because the bulk 
strain rate is unlikely to be affected by the rheology of 
the single layer as it occupies, in this model approach, 
only a minor portion of the total volume involved in the 
deformation. Likewise, the vorticity of the active layer is 
constrained by the two half spaces of rock at either side 
of the single layer, as transport of the host rock across 
the single layer is negligible. 

The orientation of the direction of maximum finite 
elongation in Fig. 9, indicated by the extensional flow 
asymptotes, is controlled by the stress orientation. It 
may therefore be interesting to elaborate the angular 
relationship between the major deviatoric stress axis and 
the extensional flow asymptote, as these are not necess- 
arily perpendicular. The flowlines of plane deformation 

can be most concisely represented by the following 
stream function (Weijermars & Poliakov in press): 

~P = el (xz  cos 2~ + z 2 sin 2~). (6) 

It follows from expression (6) that the stream function V 
is fully described if the orientation ~ of the principal 
deviatoric stress is known together with the principal 
strain rate el. The flow pattern and associated fluid 
deformation are fixed by ~ whilst el is nothing but a 
scaling parameter only controlling the rate of flow, not 
affecting the deformation path. Expression (6) is only 
valid for the particular orientation of the co-ordinate 
axes shown in Fig. 5. A stream function for the same 
deformation, but with a reference frame always oriented 
at 45 ° to the principal deviatoric stress axis, has been 
discussed elsewhere (Weijermars 1991, equation 3). 

Figure 10(a)-(e) shows the full flow patterns govern- 
ing the corresponding deformations shown in Figs. 9(a)- 
(e), using ~ = 0 °, 30 °, 45 °, 60 ° and 80 ° and arbitrary strain 
rate ~1- The hyperbolic streamline patterns all possess a 
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Fig. 9. (a)-(e)  Progressive deformation of the unit cube of Fig. 2 by the stress orientations ~ = 0*, 30 °, 45 °, 60* and 80*. The 
structures indicated are for active, competent  single layers. Increments of finite strain are 2 Ma apart for a rock deforming at 
a strain rate of  10 -14 s -1 . The direction of  maximum stretch is parallel to the the stretching fault or the X-direction for 
principal deviatoric stress orientations 0 ° -< ~ -< 45 °. However,  the direction of maximum stretch is not parallel to the X-axis 
but aligned with the orientation of the extensional flow asymptote for deformations where 45 ° < ~ <- 90 °. Rotation of 
material lines towards parallelism with the extensional flow asymptote occurs faster in pure shear deformation than in 

simple shear deformation (cf. Weijermars 1991). 

unique set of two straight streamlines (both solutions of 
~p = 0), except for ~ = 45 °, where they coincide. The 
asymptote  to the exit flow, te rmed here the extensional 
asymptote,  coincides with the X-axis or stretching fault 

for 0 ° --< ~ -< 45 °. The asymptote  to the entrance flow, 
termed here the compressional asymptote,  coincides 
with the X-axis for 45 ° --< ~ -< 90 °. In the latter case, the 
direction of the extensional flow asymptote  is variable. 
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Fig. 10. (a)--(e) Flowlines governing the deformations shown in Figs. 
9(a)-(e). These are solutions of the stream function of equation (6) 
using the stress orientations ~ = 0 °, 30 °, 45 °, 60 ° and 80 °, and arbitrary 
strain rate b~. The inclinations of the flow asymptotes, o~ 1 and a2, are 
governed by equations (7a) and (7b), respectively. The relative veloc- 
ity vectors, Vr, of the upper boundary of the deforming volume is 

parallel to the inclined flow asymptotes. 

The direction of the compressional flow asymptote, al,  
is given by: 

al = 90 ° - 2~, provided 0 ° -< ~ -< 45 °. (7a) 

The orientation of the extensional flow asymptote, a2, is 
given by: 

ct 2 = 2~ - 90 °, provided 45 ° -< ~ <- 90 °. (7b) 

Positive angles al are measured clockwise from the 
X-axis and positive angles a2 are measured anti- 
clockwise from the X-axis (Fig. 10). 

Figure 10 includes information on the relationship 
between the relative plate motion and the stress orien- 
tation within the deformation zone. One principal axis 
of deviatoric stress coincides with the bisector of the 
acute angle between the relative velocity vector and the 
normal to the boundary of the deforming zone, as 
elaborated elsewhere (Weijermars submitted). The 
relative velocity vectors, Vr, of the upper boundary of 
the deforming volume are parallel to the inclined flow 
asymptotes. 

DISCUSSION 

It has been common to discuss the length history of 
material lines by graphically superposing the incremen- 
tal strain ellipsoid with the finite strain ellipsoid (cf. 
Ramsay 1967, Ramsay & Huber 1983). Whereas pre- 
viously the only cases considered were pure and simple 
shear deformations, the analytical results introduced 
here allow discussion of any type of homogeneous plane 
deformation, with special reference to the boundary 
stresses controlling the deformation• The limiting 
assumptions made are: (1) homogeneous bulk defor- 
mation; (2) no volume change; and (3) plane strain• 
These three conditions are commonly imposed as 
boundary conditions in analog experiments using active 
single layers in pure and simple shear boxes (references 
cited), and the instabilities observed have been used to 
confirm predictions based on length changes in passive 
marker lines. However, potentially tangible effects on 
the symmetry of folds may occur from amplification of 
initially asymmetric perturbations (e.g. Abbassi & 
Mancktelow 1990). Such local complications and devi- 
ation from the bulk behaviour are neglected in the 
present first-order approximation for the sake of gener- 
alization. Modelling of active marker layers in advanced 
analog experiments and numerical simulations may help 
to improve the generalization attempted here. 

The results of the present analysis may be translated 
into practical rules for constraining bulk palaeostress 
orientations from the geometry of competent and 
incompetent single layers or veins. Hints for checking 
the validity of the assumption underlying the model 
approach, if applied to field studies, have been discussed 
elsewhere (Weijermars 1991, 1992)• If the limiting con- 
ditions hold, the direction of the major principal 
palaeostress can be constrained as follows. 

(1) Determine whether the finite strain is large enough 
to assume that initially cross-cutting material markers 
have all become aligned with the extensional flow 
asymptote. The axes of Figs. 7 and 8 can be scaled with 
the principal bulk stretch, $1, instead of the non- 
dimensional time, R ,  by using R t = In $1. Although this 
expression is only strictly valid for pure shear defor- 
mations, it is still a good approximation even for simple 
shear for stretches smaller than 3, and provides rough 
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estimates for larger simple shears (Weijermars 1991). 
Recall that 4 Ma dimensional time corresponds to a non- 
dimensional time R t = 4 x 0.315 = 1.26, which gives a 
finite stretch $1 = 3.5. This stretch is enough to bring 
most material lines parallel to the flow asymptotes in 
pure shear deformations. A stretch of about 10 on a time 
scale of 8 Ma is required to achieve a similar alignment in 
simple shear deformations. 

(2) Establish whether the flow asymptotes implied by 
rotated markers are oblique or subparallel to a physical 
boundary separating the deformed region from adjac- 
ent, relatively undeformed rock. If oblique, all para- 
meters are solvable. The compressional flow asymptote 
is then parallel to the physical boundary and the direc- 
tion of the extensional flow asymptote is traced by the 
oblique markers so that 45 ° -< ~ - 90 °. The actual 
orientation ~ of the major principal deviatoric stress 
follows from the angle, a2, between the two flow asymp- 
totes, by: 

= (a2 + 90°)/2. (8) 

(3) If cross-cutting material line markers have all 
rotated to become, not oblique, but parallel to the 
physical boundary,  then 0 ° -< ~ -< 45 °. It is assumed that 
shortening competent  layers will fold and extending 
competent  layers boudinage. Likewise, shortening 
incompetent layers will mullion and extension develops 
inverse folds which resemble pinch-and-swells if not 
stretching by uniform thinning. If a competent  layer 
normal to the stretching fault is symmetrically folded 
then ~ = 0 °. Layers which have not developed any 
mechanical instability, neither boudins nor folds, may 
imply that no change in lengths has occurred and this can 
only occur in true simple shear, ~ = 45 °. Laboratory 
experiments have established that lines parallel to the 
direction of shear in simple shear do not fold unless by 
attenuation of large initial perturbations (Ramberg 
1959, Ghosh 1966). Alternatively, straight parallel 
layers without any mechanical perturbation could have 
undergone uniform stretching and it may be difficult in 
nature to calibrate this against the initial length. 

If the preceding tests indicate that 0 ° -< ~ -< 45 °, then 
the bulk palaeostress orientation may be constrained in 
terms of the angle, 7, between the stress direction and 
the enveloping surface of the single layers studied. 
Figures 11 (a)-(f)  illustrate the principle for a competent  
single layer and Figs. 12(a)-(f) show the corresponding 
cases for an incompetent single layer. Symmetric and 
non-rotational structures occur only if the bulk defor- 
mation is a pure shear, so that symmetric folds or 
symmetric mullions imply that the folded layer was 
initially parallel to the direction of the major principal 
stress axis. Similarly, symmetric pinch-and-swells and 
non-rotated but boudinaged blocks are normal to the 
direction of the major principal stress axis. Asymmetric 
folds, asymmetric mullions and rotated boudins and 
pinch-and-swells all imply that the principal palaeostress 
axes were oblique to the enveloping surface of the 
deformed layer. The sense of rotation and asymmetry 
are not only kinematic indicators, but also constrain the 

C o m p e t e n t  s ingle  layer  

a) 3, = 0 ° b) 0 ° < 3, < 45 ° c) 3, = 45 ° 

d) 3,= 90 ° e) 90 ° > 7>  45° 

I - - - - - I  - - - -  

f) 3' = 45° 

Fig. i1. (a)-(f) Orientations of palaeostress axes may be constrained 
using the orientation of symmetric and asymmetric structures dis- 
played by competent single layers (folds, boudins). The intermediate 
deviatoric stress, r2, is always perpendicular to the plane of view a s  

plane strain is assumed. The direction of strain refraction used a s  

kinematic indicator in (c) is governed by expressions derived by 
Str6mg&rd (1973), Treagus (1973) and Weijermars (1992). The sense 
of rotation of the boudins in (e) is in accordance with experiments by 

Ghosh & Ramberg (1976). 

range of possible orientations of the principal stress axes 
within 0-45 ° to the enveloping surface of the single layer. 
Kinematic indicators have to be used in order to be able 
to decide which of the two possible 45°-directions in 
simple shear is correct. Estimates of the paleostress 

I ncompeten t  s ingle  layer  

a) 11= 0 ° b) 0 ° < 3,< 45 ° c) 3, = 4S o 

T;1 

45'1 

d) 7 = 90° e) 90 ° > 7>  45° f) 7 = 45° 

Fig. 12. (a)-(f) Orientations of palaeostress axes constrained using 
the orientation of symmetric and asymmetric structures displayed by 
incompetent single layers (mullions, inverse folds). The intermediate 
deviatoric stress, r2, is always perpendicular to the plane of view as 

plane strain is assumed. 
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directions thus obtained can be calibrated against those 
determined from the inclination and stretch of the finite 
ellipse and applying the nomograms of Weijermars 
(1991). 

Obviously, there are also implications for models of 
the development of a foliation. Assume that the unde- 
formed boxes in Fig. 9 comprise a randomly oriented 
fabric. The fabric will develop a preferred orientation 
according to the March passive rotation model and will 
be enhanced by crystalloplastic flow and recrystalliza- 
tion. The direction of the foliation and associated 
stretching lineation will rotate towards parallelism with 
the extensional flow asymptote. This insight can be used 
to constrain the possible orientations of the major princi- 
pal deviatoric stress axis, 31, with respect to the foliation. 
In all cases considered here, the angle between the 
foliation and 31 will vary between 45 ° and 90 °. The 
particular relationship between 31, bulk deformation, 
and boundary movement in anisotropic rocks has been 
elaborated elsewhere (Weijermars 1992). 

Finally, the minimum work paths of progressive de- 
formation as discussed by Nadai (1963) closely corre- 
spond to those resulting from a steady stress field. 
Whether nature is actually bothered by minimum energy 
requirements is another matter. However, deformations 
by bulk stresses of steady orientation are inherent to 
deformation zones confined between two subparallel 
boundaries converging or diverging without relative 
rotations (Fig. 10). This insight, together with the 
knowledge that the tectonic plates which drive defor- 
mation have steady directions of relative motion over 
long periods underlies my assumption that many defor- 
mation patterns may have been created in a regionally 
steady stress field. 
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